Промышленный лизинг Промышленный лизинг  Методички 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 [ 130 ] 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292

этой продукции в двух цехах своего производства. Цехи отличаются главным образом ресурсом рабочего времени и сырья, как показывает следующая таблица.

Ресурс рабочего времени (часов в рабочий день)

Ресурс сырья (фунты в день)

Сформулируйте задачу в виде задачи частично-целочисленного линейного программирования и используйте программу TORA для оптимального размещения производства по цехам.

4. Рассмотрите задачу планирования производственной линии, связанной с изготовлением двух различных изделий на одном станке. Последовательность выполнения необходимых для этого восьми операций изображена на рис. 9.3. Пусть Pj- время выполнения j-й операции 0 = 1, 2, п). Сроки сдачи изделий типа 1 и 2, которые определяются на основе некоторого исходного момента, равны dl и d2 соответственно. Предполагается, что любая выполняемая на станке операция должна быть завершена до начала другой операции. Сформулируйте задачу в виде задачи частично-целочисленного линейного программирования.


Изделие 1 Изделие 2

Рис. 9.3. Отношения предшествования операций для упражнения 4

5. Компания владеет фабрикой, которая производит изделия трех типов. Необходимые трудовые затраты и потребности сырья для производства одной единицы каждого из трех типов изделий приведены в следующей таблице.

Тип изделия

Необходимое время (час./ед.)

Необходимое сырье (фунты/ед.)

Наличный дневной объем

Доходы от производства единицы каждого из трех типов изделий равны 25, 30 и 45 долл. соответственно. Если будет производиться изделие типа 3, то его ежедневный объем производства должен быть не менее 5 единиц. Сформулируйте задачу в виде задачи частично-целочисленного линейного программирования и используйте программу TORA, чтобы найти оптимальное решение.

6. Опишите невыпуклые заштрихованные области допустимых решений, которые изображены на рис. 9.4, в виде набора одновременно выполняющихся



ограничений. Используйте программу TORA, чтобы найти оптимальное решение, которое максимизирует целевую функцию г = 2хх + Зх2 при ограничениях, определяющих область, изображенную на рис. 9.4, а.

х2 х2


а б в

Рис. 9.4. Пространства решений для упражнения 6

7. Пусть требуется, чтобы любые k ограничений из следующих т ограничений были активными.

g,(xvx2.....хп)<Ъ i = l,2, .... т.

Покажите, как это сделать.

8. Правая часть следующего ограничения может принимать одно из значений bi> Ь2> °т> т-е-

gixlt х2.....хп) < bv b2, ... или bm.

Покажите, как можно представить это ограничение.

9.2. МЕТОДЫ РЕШЕНИЯ ЗАДАЧ ЦЕЛОЧИСЛЕННОГО ПРОГРАММИРОВАНИЯ

Методы решения задач целочисленного линейного программирования основаны на использовании вычислительных возможностей методов линейного программирования. Обычно алгоритмы целочисленного программирования включают три шага.

Шаг 1. Ослабление пространства допустимых решений задачи целочисленного линейного программирования путем замены любой двоичной переменной у непрерывным ограничением 0 < у < 1 и отбрасывания требования целочисленности для всех остальных переменных. В результате получается обычная задача линейного программирования.

Шаг 2. Решение задачи линейного программирования и определение ее оптимального решения.

Шаг 3. Имея полученное (непрерывное) оптимальное решение, добавляем специальные ограничения, которые итерационным путем изменяют пространство допустимых решений задачи линейного программирования таким образом, чтобы в конечном счете получилось оптимальное решение, удовлетворяющее требованиям целочисленности.

Разработаны два общих метода генерирования специальных ограничений, о которых идет речь при реализации шага 3.



1. Метод ветвей и границ.

2. Метод отсекающих плоскостей.

Хотя ни один из упомянутых методов не дает надежных результатов при решении задачи целочисленного линейного программирования, опыт вычислений свидетельствует, что метод ветвей и границ более успешно решает задачу, чем метод отсекающих плоскостей.

9.2.1. Метод ветвей и границ

Впервые метод ветвей и границ был предложен в 1960 году А. Лэндом (A. Land) иДж. Дойгом (G. Doig) для решения полностью целочисленных и частично-целочисленных задач линейного программирования. Позднее в 1965 году Э. Бэлес (Е. Balas) разработал аддитивный алгоритм для решения задач с двоичными переменными. Этот алгоритм с вычислительной точки зрения оказался настолько прост (в основном используя только операции сложения и вычитания), что его рассматривали как возможный прорыв в методах решения задач ЦЛП общего вида.3 К сожалению, этот алгоритм не оправдал возлагаемые на него надежды. Более того, если первоначально алгоритм не был связан с методом ветвей и границ, то вскоре было установлено, что аддитивный алгоритм является частным случаем метода ветвей и границ.

В этом разделе мы представим только метод ветвей и границ и основы этого метода объясним на численном примере.

Пример 9.2.1

Рассмотрим следующую задачу целочисленного линейного программирования.

Максимизировать z = 5х, + 4х2

при ограничениях

ж, + ж2< 5, Юж, + 6х2 < 45, ж х2> 0 и целые.

На рис. 9.5 пространство допустимых решений задачи целочисленного линейного программирования представлено точками. Соответствующая начальная задача линейного программирования (обозначим ее ЛПО) получается путем отбрасывания условий целочисленности. Ее оптимальным решением будет ж, = 3,75, ж2 = 1,25 и z = 23,75.

Поскольку оптимальное решение задачи ЛПО не удовлетворяет условию целочисленности, метод ветвей и границ изменяет пространство решений задачи линейного программирования так, что в конечном счете получается оптимальное решение задачи целочисленного линейного программирования. Для этого сначала выбирается одна из целочисленных переменных, значение которой в оптимальном решении задачи ЛПО не является целочисленным. Например, выбирая ж1 (= 3,75), замечаем,

3 Общую задачу ЦЛП можно выразить через двоичные переменные следующим образом. Любая целочисленная переменная х, значения которой не превышают конечной верхней границы и (т.е. 0 < х < и), может быть выражена через двоичные переменные с помощью представления х = 2°у0 + 2у, + 22у2 +... + 2кyt, где к - наименьшее целое число, удовлетворяющее условию 2*-1>и,а y0,y ...,)>i -двоичные переменные.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 [ 130 ] 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292