Промышленный лизинг Промышленный лизинг  Методички 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 [ 58 ] 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292

ГЛАВА 5

ТРАНСПОРТНЫЕ МОДЕЛИ

Транспортные модели (задачи) - специальный класс задач линейного программирования. Эти модели часто описывают перемещение (перевозку) какого-либо товара из пункта отправления (исходный пункт, например место производства) в пункт назначения (склад, магазин, грузохранилище). Назначение транспортной задачи - определить объем перевозок из пунктов отправления в пункты назначения с минимальной суммарной стоимостью перевозок. При этом должны учитываться ограничения, налагаемые на объемы грузов, имеющихся в пунктах отправления (предложения), и ограничения, учитывающие потребность грузов в пунктах назначения (спрос). В транспортной модели предполагается, что стоимость перевозки по какому-либо маршруту прямо пропорциональна объему груза, перевозимого по этому маршруту. В общем случае транспортную модель можно применять для описания ситуаций, связанных с управлением запасами, управлением движением капиталов, составлением расписаний, назначением персонала и др.

Хотя транспортная задача может быть решена как обычная задача линейного программирования, ее специальная структура позволяет разработать алгоритм с упрощенными вычислениями, основанный на симплексных отношениях двойственности. В данной главе будет показан этот алгоритм и его тесная связь . с симплекс-методом.

5.1. ОПРЕДЕЛЕНИЕ ТРАНСПОРТНОЙ МОДЕЛИ

На рис. 5.1 показано общее представление транспортной задачи в виде сети с т пунктами отправления и п пунктами назначения, которые показаны в виде узлов сети. Дуги, соединяющие узлы сети, соответствуют маршрутам, связывающим пункты отправления и назначения. С дугой (i, j), соединяющей пункт отправления i с пунктом назначения j, соотносятся два вида данных: стоимость с, перевозки единицы груза из пункта i в пункт j и количество перевозимого груза х . Объем грузов в пункте отправления / равен а а объем грузов в пункте назначения j - b . Задача состоит в определении неизвестных величин х , минимизирующих суммарные транспортные расходы и удовлетворяющих ограничениям, налагаемым на объемы грузов в пунктах отправления (предложения) и пунктах назначения (спрос).



Пункты отправления Пункты назначения

Объемы предложений


Рис. 5.1. Представление транспортной задачи

Пример 5.1.1

Автомобильная компания MG Auto имеет три завода в Лос-Анджелесе, Детройте и Новом Орлеане и два распределительных центра в Денвере и Майами. Объемы производства заводов компании в следующем квартале составят соответственно 1000, 1500 и 1200 автомобилей. Ежеквартальная потребность распределительных центров составляет 2300 и 1400 автомобилей. Расстояния (в милях) между заводами и распределительными центрами приведены в табл. 5.1.

Таблица 5.1

Денвер

Майами

Лос-Анджелес

1000

2690

Детройт

1250

1350

Новый Орлеан

1275

Транспортная компания оценивает свои услуги в 8 центов за перевозку одного автомобиля на расстояние в одну милю. В результате получаем следующую стоимость перевозок (с округлением до доллара) по каждому маршруту.

Таблица 5.2

Денвер (1)

Майами (2)

Лос-Анджелес (1)

Детройт (2)

Новый Орлеан (3)

Основываясь на данных из табл. 5.2, формулируем следующую задачу линейного программирования.

Минимизировать z = 80jc + 215.v12 + 100.v21 +108x22 + 102jt31 + 68x32 при ограничениях

xu + jc12 = 1000 (Лос-Анджелес),

jc21 + jc22 = 1500 (Детройт),

*3i + хз2 = 1200 (Новый Орлеан),



хи + х21 + х31 = 2300 (Денвер),

х12 + х22 + х32 = 1400 (Майами),

xtj>0, /=1,2,3,7 = 1,2.

Эти ограничения выражены в виде равенств, поскольку общий объем произведенных автомобилей (1000 + 1500 + 1200 = 3700) равен суммарному спросу распределительных центров(2300 + 1400 = 3700).

Данную задачу ЛП можно решить симплекс-методом. Но специфическая структура ограничений позволяет решить эту задачу более простым способом с помощью так называемой транспортной таблицы (табл. 5.3).

Таблица 5.3

Денвер Майами Объем производства

Лос-Анджелес

1000

Детройт

1500

Новый Орлеан

Х.12

1200

Спрос

2300

1400

Оптимальное решение (полученное с помощью программы TORA ) показано на рис. 5.2. Оно предполагает перевозку 1000 автомобилей из Лос-Анджелеса в Денвер, 1300 автомобилей- из Детройта в Денвер, 200 автомобилей- из Детройта в Майами и 1200 - из Нового Орлеана в Майами. Минимальная стоимость перевозок составляет 313 200 долл.

1000-

150О

120О


2300

1400

Новый Орлеан

Рис. 5.2. Схема оптимальных перевозок

Чтобы получить в программе TORA решение транспортной задачи, в меню Main Menu выберите команду Transportation Model (Транспортная модель). Затем в меню SOLVE/MODIFY выберите команду Solved Final solution. Более подробно решение транспортных задач в программе TORA описано в разделе 5.3.3.



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 [ 58 ] 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292