Промышленный лизинг Промышленный лизинг  Методички 

1 2 3 4 5 6 7 8 9 10 [ 11 ] 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

гут содержать несколько параметров) и для каждой из них оценивают, насколько успешно функцией того или иного вида можно описать тенденцию рассматриваемого временного ряда. При наличии компьютера зти вычисления не занимают много времени, а иногда могут проводиться даже в автоматическом режиме, выделяющем среди нескольких заданных видов трендов оптимальный. Однако далеко не всегда среди рассмотренных функций есть та, которая действительно достаточно эффективно описывает тенденцию развития заданного временного ряда. В этом случае приходится идти другими путями. Так, часто в подобной ситуации производят различные преобразования членов временного ряда (логарифмирование, дифференцирование - образование разностей соседних членов ряда, интегрирование - суммирование последовательных членов ряда и др.) для того, чтобы попытаться получить временной ряд с ясно выраженным линейным трендом. Если зто удается, то к полученному ряду применяют методы вычисления тренда, описанные выше, а потом обратным преобразованием возвращаются к исходному ряду.

б) Методы выявления скрытых зависимостей. Корреляционный анализ временных рядов. Спектральный анализ и его применения.

После того, как выявлен тренд, остается задача описать те колебания, которые временной ряд совершает вокруг этого тренда. Ведь ясно, что тренд - зто просто тенденция, на ней основывать прогнозы рискованно, так как в разные промежутки времени реальная ситуация может отклоняться, причем весьма значительно, от тренда в ту или иную сторону. При этом отклонение в одну сторону может принести прибыль, а в другую - убытки. В техническом анализе в этом случае говорят об осцилляторах. Методика анализа осцилляторов до самого недавнего времени находилась на очень низком, практически на доматематическом уровне. Только в последние годы с приходом вычислительной техники и специалистов, имеющих хорошее математическое образование (они до сих пор реализовывали его в оборонной промышленности, которая во всем мире сейчас находится в упадке) при анализе осцилляторов стали использоваться достаточно современные методы (основанные на гармоническом и спектральном анализе).



Колебания вокруг тренда разделяют на регулярные (являющиеся комбинацией нескольких синусоидальных или близких к ним колебаний, имеющих разные частоты) и случайные. Для выделения регулярных колебаний (их еще иногда называют скрытыми закономерностями) в математике по заказам большого числа прикладных наук разработано множество разных методов. Даже просто перечислить их нет никакой возможности. Однако все эти методы принадлежат обычно к одной из двух больших групп.

В первой группе - методы, своим происхождением обязанные математической статистике, а точнее - теории корреляции. Теория корреляции изучает связи между случайными величинами, а также связи между отдельными значениями временных рядов, разделенных определенным промежутком времени (лагом). Если оказывается, например, что имеется тесная связь между значениями временного ряда, разделенными промежутком времени в 12 единиц, то это можно рассматривать как указание на то, что мы обнаружили колебательную компоненту (не обязательно точно синусоидальную) с периодом в 12 единиц времени. Практически такой анализ производят с помощью специальных программ, которые производят вычисление кореллограммы - оценки для функции корреляции (которая описывает корреляцию между значениями временного ряда, взятыми через всевозможные интервалы времени - лаги).

Вторая группа методов пришла из техники - там при анализе сигналов давно и с успехом используется спектральный анализ. С помощью специальных методов (разложения в тригонометрические ряды и интегралы Фурье) производится выделение наиболее значимых гармоник, которые и дают регулярную часть колебаний вокруг тренда. Здесь вычисления еще более громоздкие, чем в корреляционном анализе, однако ныне об этих сложностях можно совершенно забыть (компьютер производит все необходимые расчеты за несколько секунд). Поэтому настало время учиться анализировать те данные, которые предоставляет спектральный анализ и строить на основании этих данных прогнозы. Эти методы довольно чувствительны к погрешностям в задании исходных данных и потому иногда приводят к заключениям о наличии закономерностей в изучаемом процессе, которых на самом деле нет.



в) Стохастическое прогнозирование (модели ARIMA).

Стохастическое прогнозирование - построение прогнозов на основе разного рода стохастических моделей. Стохастические модели - зто такие модели, которые сконструированы с помощью понятий и методов теории случайных про--цессов. В частности, среди этих моделей имеются те, в которых будущие значения вычисляются с помощью формул, выражающих эти значения через несколько предыдущих (т.е. соотаетствующих предшествующим моментам времени) значений. Такого рода модели называют авторегрессионными. Есть модели и другого рода - в них процесс моделируется комбинацией нескольких абсолютно случайных процессов (называемых белым шумом). Эти модели называют моделями скользящего среднего. Понятие скользящего среднего в техническом анализе является одним из основных инструментов. Огромное число прогностических методик основано на различных комбинациях скользящих средних разных порядков (соответствующих разным временным отрезкам - 7, 14 дней и др.). В инженерной практике сходный метод называется фильтрацией сигнала. Наиболее эффективные модели используют оба указанных метода. Одна из самых распространенных, комбинированных моделей такого рода - зто ARIMA. По-русски зто звучит, как АРПСС и расшифровывается как Авто-Регрессия и Проинтегрированное Скользящее Среднее. Мы не будем здесь входить в подробности построения этих моделей - они достаточно сложны. Для тех, кто хочет асерьез ознакомиться с этим, самым эффективным классом стохастических моделей, рекомендуем обратиться к книге Статистический анализ данных на компьютере [11]. Непосредственные вычисления в ARIMA производятся только с применением компьютера, так как они очень громоздки. Метод ARIMA является наиболее распространенным общим методом стохастического моделирования во многих областях, в том числе и при серьезном подходе к анализу данных и прогнозированию финансовой деятельности.

После построения стохастической модели ее можно использовать для прогнозирования. Однако следует отметить, что прогноз в этой (как и во всех других математических моделях) выдается с указанными границами, в пределах которых возможна ошибка.



1 2 3 4 5 6 7 8 9 10 [ 11 ] 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57